WAV (or WAVE)
WAV (or WAVE), short for Waveform audio format, also known as Audio for Windows, is a Microsoft and IBM audio file format standard for storing an audio bitstream on PCs. It is an application of the RIFF bitstream format method for storing data in “chunks”, and thus also close to the 8SVX and the AIFF format used on Amiga and Macintosh computers, respectively. It is the main format used on Windows systems for raw and typically uncompressed audio. The usual bitstream encoding is the Pulse Code Modulation (PCM) format.
Description:
Both WAVs and AIFFs are compatible with Linux, Windows and Macintosh operating systems. The format takes into account some differences of the Intel CPU such as little-endian byte order. The RIFF format acts as a “wrapper” for various audio compression codecs.
Though a WAV file can hold compressed audio, the most common WAV format contains uncompressed audio in the linear pulse code modulation (LPCM) format. The standard audio file format for CDs, for example, is LPCM-encoded, containing two channels of 44,100 samples per second, 16 bits per sample. Since LPCM uses an uncompressed storage method, which keeps all the samples of an audio track, professional users or audio experts may use the WAV format for maximum audio quality. WAV audio can also be edited and manipulated with relative ease using software. The WAV format supports compressed audio, using, on Windows, the Audio Compression Manager. Any ACM codec can be used to compress a WAV file. The UI for Audio Compression Manager is accessible by default through Sound Recorder.
Beginning with Windows 2000, a WAVE_FORMAT_EXTENSIBLE header was defined which specifies multiple audio channel data along with speaker positions, eliminates ambiguity regarding sample types and container sizes in the standard WAV format and supports defining custom extensions to the format chunk.
Popularity:
Uncompressed WAV files are quite large in size, so, as file sharing over the Internet has become popular, the WAV format has declined in popularity. However, it is still a commonly used file type, suitable for retaining “first generation” archived files of high quality, or use on a system where disk space is not restricted or the time involved in compressing or uncompressing data is unwanted (for example while editing audio).
More frequently, the smaller file sizes of compressed but lossy formats such as MP3, ATRAC, AAC, (Ogg)Vorbis and WMA are used to store and transfer audio. Their small file sizes allow faster Internet transmission, as well as lower consumption of space on memory media. However, lossy formats trade off smaller file size against loss of audio quality, as all such compression algorithms compromise available signal detail. There are also lossless codecs, such as FLAC, Shorten, Monkey's Audio, ATRAC Advanced Lossless, Apple Lossless, WMA Lossless, TTA, and WavPack, but none of these is yet a ubiquitous standard for both professional and home audio.
The usage of the WAV format has more to do with its familiarity, its simplicity and simple structure, which is heavily based on the IFF file format. Because of this, it continues to enjoy widespread use with a variety of software applications, often functioning as a 'lowest common denominator' when it comes to exchanging sound files between different programs.
In spite of their large size, uncompressed WAV (though that format can be different from the Microsoft WAV) files are sometimes used by some radio broadcasters, especially those that have adopted the tapeless system. BBC Radio in the UK uses 44.1 kHz 16 bit two channel .wav audio as standard in their VCS system. The ABC "D-Cart” system, which was developed by the Australian broadcaster, also uses a non-compressed format to preserve sound quality, and it has become more economical as the cost of data storage has dropped. In the system of “D-Cart”, the sampling rate of WAV files is usually at a 48 kHz 16 bit two channel, which is identical to that of the Digital Audio Tape.